题目描述
背景
为了统计小球的方案数,平平已经累坏了。于是,他摘掉了他那800度的眼镜,躺在树下休息。
后来,平平发现树上有一个特别不一样的水果,又累又饿的平平打算去把它摘下来。
题目描述
现在,将大树以一个N个节点的无向图的形式给出,每个节点用坐标(Xi,Yi)来表示表示,平平要从第一个点爬到第N个点,除了从一个节点爬向另一个相邻的节点以外,他还有一种移动方法,就是从一个节点跳下,到达正下方的某个节点(之间可隔着若干个点和边),即当Xj=Xi and Yi<Yj 时,平平就可以从j节点下落到i节点,他下落所用时间满足自由落体公式,t=sqrt((Yj-Yi)*2/g) (注意:g取10)。如果出现两线相交的情况,我们不认为它们是相通的。
数据规模
对于100%数据,1<=N<=100,1<=V<=10,0<=X,Y<=100.
建议使用extended(pas)或double(c and c++)计算,我们对于精度造成的误差将不予重测。
输入格式
两个整数N,V,N表示节点个数,V表示平平爬树的速度。
接下来N行,每行包含3个整数X,Y,F,X,Y是这个点的坐标,F是他的父节点(F一定小于这个点的标号,第一行的F为0)。
注意:两节点间距离按欧几里德距离计算 dis = sqrt( ( x1 – x2 ) 2+ ( y1 – y2 )2 )
输出格式
输出仅包括一行,从1到N所用的最少所需时间T,保留两位小数。
样例输入
样例输出